博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hdu 4965 矩阵快速幂 矩阵相乘性质
阅读量:6150 次
发布时间:2019-06-21

本文共 4755 字,大约阅读时间需要 15 分钟。

Fast Matrix Calculation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 170    Accepted Submission(s): 99

Problem Description
   One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.
   Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.
   Step 1: Calculate a new N*N matrix C = A*B.    Step 2: Calculate M = C^(N*N).    Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’. Step 4: Calculate the sum of all the elements in M’.
Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.
 
Input
   The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.
   The end of input is indicated by N = K = 0.
 
Output
   For each case, output the sum of all the elements in M’ in a line.
 
Sample Input
4 2 5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5 6 3 1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0 5 0 3 4 5 1 1 0 5 3 2 3 3 2 3 1 5 4 5 2 0 0
 
Sample Output
14 56
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:            
 
题解:
 (4 <= N <= 1000), (2 <=K <= 6)
N*K matrix A,K*N matrix B
A*B是N*N,但是B*A为k*k,于是。。。

 

1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7 #include
8 #include
9 10 #define N 1005 11 #define M 15 12 #define mod 6 13 #define mod2 100000000 14 #define ll long long 15 #define maxi(a,b) (a)>(b)? (a) : (b) 16 #define mini(a,b) (a)<(b)? (a) : (b) 17 18 using namespace std; 19 20 int n,k; 21 int a[N][10],b[10][N],d[10][10],f[N][10],g[N][N],h[N][N]; 22 int ans; 23 24 typedef struct{ 25 int m[10][10]; 26 } Matrix; 27 28 Matrix e,P; 29 30 Matrix I = { 1,0,0,0,0,0,0,0,0,0, 31 0,1,0,0,0,0,0,0,0,0, 32 0,0,1,0,0,0,0,0,0,0, 33 0,0,0,1,0,0,0,0,0,0, 34 0,0,0,0,1,0,0,0,0,0, 35 0,0,0,0,0,1,0,0,0,0, 36 0,0,0,0,0,0,1,0,0,0, 37 0,0,0,0,0,0,0,1,0,0, 38 0,0,0,0,0,0,0,0,1,0, 39 0,0,0,0,0,0,0,0,0,1, 40 }; 41 42 Matrix matrixmul(Matrix aa,Matrix bb) 43 { 44 int i,j,kk; 45 Matrix c; 46 for (i = 1 ; i <= k; i++) 47 for (j = 1; j <= k;j++) 48 { 49 c.m[i][j] = 0; 50 for (kk = 1; kk <= k; kk++) 51 c.m[i][j] += (aa.m[i][kk] * bb.m[kk][j])%mod; 52 c.m[i][j] %= mod; 53 } 54 return c; 55 } 56 57 Matrix quickpow(int num) 58 { 59 Matrix m = P, q = I; 60 while (num >= 1) 61 { 62 if (num & 1) 63 q = matrixmul(q,m); 64 num = num >> 1; 65 m = matrixmul(m,m); 66 } 67 return q; 68 } 69 70 int main() 71 { 72 int i,j,o; 73 //freopen("data.in","r",stdin); 74 //scanf("%d",&T); 75 //for(int cnt=1;cnt<=T;cnt++) 76 //while(T--) 77 while(scanf("%d%d",&n,&k)!=EOF) 78 { 79 if(n==0 && k==0) break; 80 memset(d,0,sizeof(d)); 81 memset(f,0,sizeof(f)); 82 memset(g,0,sizeof(g)); 83 memset(h,0,sizeof(h)); 84 ans=0; 85 for(i=1;i<=n;i++){ 86 for(j=1;j<=k;j++){ 87 scanf("%d",&a[i][j]); 88 } 89 } 90 91 for(i=1;i<=k;i++){ 92 for(j=1;j<=n;j++){ 93 scanf("%d",&b[i][j]); 94 } 95 } 96 97 for(i=1;i<=k;i++){ 98 for(o=1;o<=k;o++){ 99 for(j=1;j<=n;j++){100 d[i][o]+=(b[i][j]*a[j][o])%6;101 }102 d[i][o]%=6;103 P.m[i][o]=d[i][o];104 }105 }106 107 108 109 e=quickpow(n*n-1);110 111 112 for(i=1;i<=n;i++){113 for(o=1;o<=k;o++){114 for(j=1;j<=k;j++){115 f[i][o]+=(a[i][j]*e.m[j][o])%6;116 }117 f[i][o]%=6;118 }119 }120 121 for(i=1;i<=n;i++){122 for(o=1;o<=n;o++){123 for(j=1;j<=k;j++){124 g[i][o]+=(f[i][j]*b[j][o])%6;125 }126 g[i][o]%=6;127 }128 }129 /*130 for(i=1;i<=n;i++){131 for(o=1;o<=n;o++){132 for(j=1;j<=n;j++){133 h[i][o]+=(g[i][j]*g[j][o])%6;134 }135 h[i][o]%=6;136 }137 }138 139 */140 141 for(i=1;i<=n;i++){142 for(o=1;o<=n;o++){143 ans+=g[i][o];144 }145 }146 printf("%d\n",ans);147 148 }149 150 return 0;151 }

 

转载于:https://www.cnblogs.com/njczy2010/p/3922956.html

你可能感兴趣的文章
Spring常用注解
查看>>
我的友情链接
查看>>
PCS子层有什么用?
查看>>
查看端口,关闭端口
查看>>
代码托管平台简介
查看>>
linux:yum和apt-get的区别
查看>>
Sentinel 1.5.0 正式发布,引入 Reactive 支持
查看>>
数据库之MySQL
查看>>
2019/1/15 批量删除数据库相关数据
查看>>
数据类型的一些方法
查看>>
Mindjet MindManager 2019使用教程:
查看>>
游戏设计的基本构成要素有哪些?
查看>>
详解 CSS 绝对定位
查看>>
AOP
查看>>
我的友情链接
查看>>
NGUI Label Color Code
查看>>
.NET Core微服务之基于Polly+AspectCore实现熔断与降级机制
查看>>
vue组件开发练习--焦点图切换
查看>>
浅谈OSI七层模型
查看>>
Webpack 2 中一些常见的优化措施
查看>>